دكتور أمجد هزاع

دكتور أمجد هزاع
تؤكد الأبحاث العلمية على أهمية العلاج بسم النحل في حالات روماتيزمية ومناعية وجلدية متعددة وفيما يلي تأثير سم النحل على مرضى الكبد و السكر و الغدة الدرقية وكذلك أمراض الجهاز الهضمي والأمعاء والتهاب البنكرياس.
اكدت الأبحاث العلمية على دور سم النحل في اضطرابات الكبد Liver Disoders وخاصة لوقاية خلايا الكبد Hepatoprotective كما أكد باحثين دور العلاج بسم النحل في حالات ايثانول مسبب اصابات الكبدethanol-induced hepatic injury وذلك عن طريق تنظيم عمل mitochondria-related apoptotic pathway [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]
يعمل سم النحل على أمراض المعدة والأمعاء GIT- Colitis حيث يعمل على تنظيم ليونة الأمعاء وحركتها الدودية ، وكذلك استخدام سم النحل لزيادة العصارة الهضمية digestive enzymes ، كما أن سم النحل مضاد للقرح الهضمية antiulcer والتهابات المرارة . [14], [15], [16], [17], [18]
سم النحل له دور هام في علاج التهابات البنكرياس أكد بحث علمي أن مادة الميليتين تمنع مادة السيريلين المسببة لالتهاب البنكرياس Melittin inhibits cerulein-induced acute pancreatitis via inhibition of the JNK pathway [19][20]
سم النحل يعالج النوع الثاني من السكر Diabetes Mellitus عن طريق تقليل مقاومة الانسولين Insuline Resistance وضبط معدلات الميتابوليزم وتقليل السمنة [45],[6], [21] [146], [286]
تشير الأبحاث أن سم النحل محفز للغدة الدرقية، ويعالج اضطرابات الغدة الدرقية. [45],[6], [21] [146], [286]
[1] D. Liu, T. Fu, W. Li, F. Xu, P. Wang, and Y. Jiang, “Efficacy of hemoperfusion combined with methylprednisolone in the treatment of heart and liver function injury caused by bee venom sting,” Panminerva Med, vol. 64, no. 2, pp. 292–293, Jun. 2022, doi: 10.23736/S0031-0808.21.04570-5.
[2] A. Senturk, B. Dalkiran, B. Acikgoz, I. Aksu, O. Acikgoz, and M. Kiray, “The effects of bee venom on liver and skeletal muscle in exhaustive swimming rats,” Biol Futur, vol. 73, no. 2, pp. 237–244, Jun. 2022, doi: 10.1007/s42977-022-00115-6.
[3] H. Kim, D. J. Keum, J. W. Kwak, H. S. Chung, and H. Bae, “Bee venom phospholipase A2 protects against acetaminophen-induced acute liver injury by modulating regulatory T cells and IL-10 in mice,” PLoS One, vol. 9, no. 12, Dec. 2014, doi: 10.1371/journal.pone.0114726.
[4] X. gong Fan et al., “Melittin ameliorates inflammation in mouse acute liver failure via inhibition of PKM2-mediated Warburg effect,” Acta Pharmacol Sin, vol. 42, no. 8, pp. 1256–1266, Aug. 2021, doi: 10.1038/s41401-020-00516-0.
[5] G. Lee and H. Bae, “Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects,” Molecules, vol. 21, no. 5, May 2016, doi: 10.3390/molecules21050616.
[6] H. Jeong, C. Lee, C. Cheng, H. C. Chou, H. J. Yang, and H. Bae, “Targeting of adipose tissue macrophages by bee venom phospholipase A2 attenuates high-fat diet-induced obesity,” Int J Obes, vol. 45, no. 8, pp. 1656–1667, Aug. 2021, doi: 10.1038/s41366-021-00823-4.
[7] S. F. Darwish, W. M. El-Bakly, H. M. Arafa, and E. El-Demerdash, “Targeting TNF-α and NF-κB activation by bee venom: Role in suppressing adjuvant induced arthritis and methotrexate hepatotoxicity in rats,” PLoS One, vol. 8, no. 11, Nov. 2013, doi: 10.1371/journal.pone.0079284.
[8] M. Sarhan, A. M. H. El-Bitar, and H. Hotta, “Potent virucidal activity of honeybee ‘Apis mellifera’ venom against Hepatitis C Virus,” Toxicon, vol. 188, pp. 55–64, Dec. 2020, doi: 10.1016/j.toxicon.2020.10.014.
[9] S. Abdulmalek, N. Mostafa, M. Gomaa, M. El-Kersh, A. I. Elkady, and M. Balbaa, “Bee venom-loaded EGFR-targeting peptidecoupled chitosan nanoparticles for effective therapy of hepatocellular carcinoma by inhibiting EGFR-mediated MEK/ERK pathway,” PLoS One, vol. 17, no. 8 August, Aug. 2022, doi: 10.1371/journal.pone.0272776.
[10] F. Jia et al., “Bottlebrush Polymer-Conjugated Melittin Exhibits Enhanced Antitumor Activity and Better Safety Profile,” ACS Appl Mater Interfaces, 2021, doi: 10.1021/acsami.1c14285.
[11] M. S. Hossen, U. M. Shapla, S. H. Gan, and M. I. Khalil, “Impact of bee venom enzymes on diseases and immune responses,” Molecules, vol. 22, no. 1, Jan. 2017, doi: 10.3390/molecules22010025.
[12] G. H. Mansour et al., “Bee venom and its active component Melittin synergistically potentiate the anticancer effect of Sorafenib against HepG2 cells,” Bioorg Chem, vol. 116, Nov. 2021, doi: 10.1016/j.bioorg.2021.105329.
[13] E. A. Abd El-Haleim, “Molecular Study on the Potential Protective Effects of Bee Venom against Fructose-Induced Nonalcoholic Steatohepatitis in Rats,” Pharmacology, vol. 105, no. 11–12, pp. 692–704, Nov. 2020, doi: 10.1159/000508511.
[14] W. Kim, “Bee Venom and Its Sub-Components: Characterization, Pharmacology, and Therapeutics,” Toxins (Basel), vol. 13, no. 3, Mar. 2021, doi: 10.3390/TOXINS13030191.
[15] S. Zhang et al., “Bee venom therapy: Potential mechanisms and therapeutic applications,” Toxicon, vol. 148, pp. 64–73, Jun. 2018, doi: 10.1016/j.toxicon.2018.04.012.
[16] M. Carpena, B. Nuñez-Estevez, A. Soria-Lopez, and J. Simal-Gandara, “Bee venom: An updating review of its bioactive molecules and its health applications,” Nutrients, vol. 12, no. 11, pp. 1–27, Nov. 2020.
[17] A. Khalil, B. H. Elesawy, T. M. Ali, and O. M. Ahmed, “Bee venom: From venom to drug,” Molecules, vol. 26, no. 16, Aug. 2021, doi: 10.3390/molecules26164941.
[18] S. H. Sung and G. Lee, “Bee venom acupuncture effects on pain and its mechanisms: An updated review,” Toxins (Basel), vol. 13, no. 9, Sep. 2021, doi: 10.3390/toxins13090608.
[19] S. W. Yun et al., “Melittin inhibits cerulein-induced acute pancreatitis via inhibition of the JNK pathway,” Int Immunopharmacol, vol. 11, no. 12, pp. 2062–2072, Dec. 2011, doi: 10.1016/J.INTIMP.2011.08.020.
[20] P. Shi et al., “Pharmacological effects and mechanisms of bee venom and its main components: Recent progress and perspective,” Front Pharmacol, vol. 13, Sep. 2022, doi: 10.3389/FPHAR.2022.1001553.
[21] S. Y. Cheon, K. S. Chung, S. S. Roh, Y. Y. Cha, and H. J. An, “Bee venom suppresses the differentiation of preadipocytes and high fat diet-induced obesity by inhibiting adipogenesis,” Toxins (Basel), vol. 10, no. 1, Jan. 2018, doi: 10.3390/toxins10010009.